
A Sys Called Qanda
Eric Breck, John Burger, Lisa Ferro,

David House, Marc Light, Inderjeet Mani

The MITRE Corporation

{ebreck, john, lferro, dhouse, light, imani}@mitre.org

Introduction

Our question answering system was built with a number of priorities in mind. First, we wanted
to experiment with natural language processing (NLP) technologies such as shallow parsing,
named entity tagging, and coreference chaining. We felt that the small number of terms in the
questions coupled with the short length of the answers would make NLP technologies clearly
beneficial, unlike previous experiments with NLP technologies on traditional IR tasks. At a
more practical level, we were familiar with and interested in such technologies and thus their use
would be relatively straightforward and enjoyable. Second, we wanted to use information
retrieval (IR) techniques in hopes of achieving robustness and efficiency. It seemed obvious that
many answers would appear in documents and passages laden with terms from the question.
Finally, we wanted to experiment with different modules from different sites with differing input

and output representation and implementational details. Thus, we needed a multi-process system
with a flexible data format.

Driven by these priorities, we built Qanda,1 a system that combines the finer-grained
representations and inference abilities of NLP with IR’s robustness and domain independence.
In the following, we describe the Qanda system, discuss experimental results for the system, and

finally discuss automating the scoring of question answering systems.

System Description

In broad strokes, Qanda processes a question as follows. It extracts the answer type from the
question; e.g., PERSON is the answer type for Who designed the Hancock Building in Boston?

At the same time, it hands the terms of the question to an IR search engine in order to retrieve
relevant documents. Next it looks for elements in the retrieved documents that are of the right
type; e.g., it might look for proper names of persons when answering a who question. Finally, it
ranks these elements by comparing their contexts (i.e., sentences) with the question using term

1 Qanda is pronounced kwan•da.

overlap. Thus, elements are returned which are of the right semantic type and whose contexts
share some terms with the question. Based on all the references to an element and the

corresponding contexts, an answer string is generated.

Let us look at each of these steps in more detail. The analysis of the question is performed using
a set of specially designed patterns. These patterns are based on particular words and on part-of-
speech tags. For example if the pattern how (large|small|big) is matched, the type MEASURE
is returned. These answer types are arranged in the hierarchy shown in Figure1 (where the types
actually used by the rest of the system are shaded). Our question analyzer also has the ability to
return types constructed in part from words in the question (e.g., MANNER_OF(DIE) is the type
returned for How did Socrates die?) but we are currently not making use of these more open

ended types.

An important component of Qanda is the IR engine that finds candidate documents. We have
used the MG system, and experimented with Smart, but for the results described in this paper, we
used the documents provided from the AT&T system. A parameter of the overall system is the

number of relevant documents to examine for answers—we used the top ten.2

2 Our intent was to process the top 100 documents returned by the IR component. After submitting our results, we

discovered a trivial bug that limited subsequent processing to the top ten.

Person

Male Female

Measure

DurationDate

Time

Organization

Company

Location

Country

Entity

Distance Rate

City

Numeric

Answer

Figure 1: Answer type hierarchy

The relevant documents are then searched for elements of the right type. A special purpose
tagger was designed for each of the answer types that could result from question analysis. Thus,
we had taggers for person proper names, measure phrases, dates, organization names, etc. Many

of the types are recognized by the Alembic system (Vilain and Day, 1996).

We should note that for both the processing done by these taggers and for the analysis of the
question, a number of preprocessing modules are used. They include a punctuation tokenizer, a
sentence tagger, and a part-of-speech tagger (Aberdeen et al., 1995).

Next the set of elements of the desired answer type are ranked. First they are ordered by how
well they match the answer type. Since these types are arranged in a hierarchy it is possible to

consider elements to be of the right type if they are of types above the desired type in the
hierarchy. For example, a candidate LOCATION matches even if an answer type of COUNTRY
is desired. However, a COUNTRY is preferred, i.e., candidates with types at least as specific as
the answer type are preferred to those with a more general type. The elements of the right type,
which we will call answer hypotheses, are ordered further by considering the textual contexts in
which they occur. More specifically, we score each sentence that an element occurs in by how
many terms it shares with the question. We do not currently weight these terms in any way;
however, they are stemmed with the Porter stemmer and a small set of stop words is used.
Answer hypotheses are ordered further by preferring hypotheses that occur earlier in their

documents.

Until now, we have remained vague about what an element (or answer hypothesis) is. Qanda
makes use of coreference and thus an element is not an offset in a document nor is it a string. It
is more abstract: it corresponds to an entity that is discussed in the document. Coreference
makes the ranking discussed above more complicated in that multiple contexts need to be
considered for each element, i.e., every sentence in which the element is mentioned. Qanda uses

the score for an element’s best context as the score for the element.

Once the answer hypotheses have been ranked, answer strings are constructed for them. Qanda
does this by combining the longest realization of an element with its best-scoring context.
Consider the question about the Hancock Building given above. Further, consider the answer
hypothesis corresponding to the individual I.M. Pei, mentioned in the following distinct
sentences:

I.M. Pei is a well-known architect.

He designed the Hancock Building.

Pei studied at MIT.

For this answer hypothesis, Qanda constructs the following answer string: I.M. Pei: He designed

the Hancock Building.

If the above processing does not work, e.g., if no answer type is extracted from the question or

no elements of the right type are found, Qanda uses the following fallback strategy: It looks for
sentences in the relevant documents (from the IR search engine) that have a large term overlap
with the question and returns these sentences as answer strings.

All of the modules mentioned above are glued together using a hub, which is a single executable
that is configured to spawn a sub-process for each module and to set up a very simple file-based
interprocess communication. XML is used for all data encoding. If the hub notices that a
module is in an error state while processing a question it kills the module, restarts it, and goes on

to the next question.

Finally, if for some reason no answer is found, as a last-ditch strategy, Qanda answers with the
string You’re such a nice judge :-).

Discussion of Results

Our TREC results are given in Figure 2. Note that Qanda found the 250-byte answer and ranked
it within its top five responses 56 percent of the time. It ranked a correct answer first 36 percent
of the time. With respect to the 50-byte responses the percentages are 40 and 21, respectively.

Next we discuss a preliminary error analysis. The purpose of this was to guide the future

development of Qanda. Errors were divided into the following categories, with overlap:

• Question Analysis: The question analyzer failed to recognize the question type and the
actual question type was one of those in the hierarchy.

• Preprocessing: One of the above-mentioned preprocessors failed. For example, a sentence
boundary was incorrectly marked.

• Question-Answer Context Comparison: The answer was found but not ranked highly
enough. Additionally, a different method of comparing the answer context with the question
would produce a higher rank.

• Numeric Expressions (Date,Time,Measures): An expression involving a number or
referring to an element involving a number was misclassified.

• Additional Answer Type Required: The answer was of a type that is not part of our answer
type hierarchy.

• Coreference Resolution: The extraction of the answer would have been facilitated by better
coreference resolution of elements in the document.

250 byte 50 byte
Correct answer ranked 1
Correct answer within top 5
No correct answer

72
112
86

42
80

118
Mean RAR 0.434 0.281

Figure 2: Results on 198 TREC questions

• Extra-Sentential Structure: The extraction of the answer would have been facilitated by
making use of rhetorical structure, discourse structure, document layout, etc. For example,
the question Why are electric cars less efficient in the north-east than in California? would
have been answered by our system if we would have recognized the relation between the
sentence John Williams … points out that electric cars are less efficient in the northeast than

they are in California and the following sentence which reads The cold in the north-east

hurts our range.
• IR : The answer was not contained in any of the top ten documents.
• Bugs: Errors that were caused by problems that were thought of and addressed, but

incorrectly implemented.

Figure 3 shows these error categories and the number of questions for which Qanda could find
no answer (again, there is some overlap, due to multiple errors). Note that over half of the errors
can be attributed to the IR engine not ranking an answer document highly enough, in this case, in
the top ten. As mentioned above, our intent was to process the top 100 documents, which would
have almost certainly reduced the number of such errors. Also note that numeric expressions are

surprisingly important in this test set (63 of the questions had numeric answers), and that we had
a number of problems with such questions. Finally, our comparison of questions with potential
answer contexts must clearly be made more sophisticated.

Question Analysis 2

Preprocessing 10

Question-Answer Context Comparison 18

Additional Answer Type Required 2

Numeric Expressions (Date,Time,Measures) 17

Coreference Resolution 9

Extra-Sentential Structure 3

IR 47

Bugs 7

Other 4

All errors 86

Figure 3: Error categorization

Preliminary results on automating the evaluation of question answering systems

Automated evaluations are crucial for tight system development loops, which in turn often result
in greatly improved system performance. We explored word-based precision and recall as a

scoring metric for question answering systems. More precisely, we looked at scoring a system
response to a question concentrating on the number of terms both in the response and in a
human-prepared answer key for the question. The precision is the number of these overlap terms
divided by the number of terms in the system response and the recall is the overlap divided by
the number of terms in the answer key answer. The terms are stemmed and stop words are

ignored. The answer key may contain multiple phrasings of a single answer and also multiple
answers. The alternative in the answer key that provides the best F measure3 for a system
response is used to generate the precision and recall numbers for that response.

We are interested in how well these metrics correlate to a judge’s binary scoring of responses.
We have scored all of the participating systems’ responses against an answer key, constructed by
our chief annotator4, based on her own knowledge, the responses, and the TREC corpus. Figures
4 and 5 plot a number of recall intervals on the horizontal axis and the number of systems

responses that fall into the intervals on the vertical axis. The first graph is for responses deemed
correct by the judges and the second for those responses deemed incorrect. We ignore precision
since the system response length is roughly uniform. The results seem promising in that low
recall correlates with incorrectness and high recall with correctness, with a coefficient of 0.84.
However, we need to do a more careful statistical analysis and we need to explore the causes of
the false positives and false negatives. A related study of answer key precision and recall
metrics for automatic scoring of reading comprehension exams is described in (Hirschman, et al.

1999).

Conclusion

The mixture of NLP and IR that the Qanda system embodies has produced reasonable
performance. Our error analysis indicates that performance can be increased by improving the
modules that deal with numeric expressions and by improving the initial set of relevant
documents considered. Simply considering more relevant documents for each question is likely
to improve performance. In order to explore the impact of such parameter settings, we are using
the automated evaluation method described above. We are also using this evaluation method to
test configurations with and without certain modules (e.g., the coreference module). This will

allow us to quantify the effects of that module.

3 F measure is the harmonic mean of precision and recall.

4 This individual has substantial experience in constructing language testing materials for adults but was not

involved in the design or implementation of Qanda.

Acknowledgements

We would like to thank John Henderson, Warren Greiff, and Barry Schiffman for their help with
the error analysis. We would also like to thank Lynette Hirschman for many helpful discussions.

References
Aberdeen, John, John Burger, David Day, Lynette Hirschman, Patricia Robinson and Marc Vilain 1995.

MITRE: Description of the Alembic System Used for MUC-6. In Proceedings of the Sixth Message
Understanding Conference. Morgan Kaufman.

Hirschman, Lynette, Marc Light, Eric Breck, John D. Burger 1999. Deep Read: A Reading
Comprehension System. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics, 325–332. College Park, Maryland.

Vilain, Marc and David Day 1996. Finite-State Parsing by Rule Sequences. International Conference
on Computational Linguistics (COLING-96). Copenhagen, Denmark. The International Committee on
Computational Linguistics.

0

5000

10000

15000

20000

25000

30000

35000

0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 0.99 1

Word Recall

N
u

m
b

er
 o

f
R

es
p

o
n

se
s

Figure 5: Automatic scoring for answers judged incorrect

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 0.99 1

Word Recall

N
u

m
b

er
 o

f
R

es
p

o
n

se

Figure 4: Automatic scoring for answers judged correct

